Base subsets of symplectic Grassmannians
نویسنده
چکیده
Let V and V ′ be 2n-dimensional vector spaces over fields F and F ′. Let also : V × V → F and ′: V ′ × V ′ → F ′ be non-degenerate symplectic forms. Denote by and ′ the associated (2n − 1)-dimensional projective spaces. The sets of kdimensional totally isotropic subspaces of and ′ will be denoted by Gk and G ′ k , respectively. Apartments of the associated buildings intersect Gk and G ′ k by so-called base subsets. We show that every mapping of Gk to G ′ k sending base subsets to base subsets is induced by a symplectic embedding of to ′.
منابع مشابه
Unitary Grassmannians of Division Algebras
We consider a central division algebra over a separable quadratic extension of a base field endowed with a unitary involution and prove 2-incompressibility of certain varieties of isotropic right ideals of the algebra. The remaining related projective homogeneous varieties are shown to be 2-compressible in general. Together with [17], where a similar issue for orthogonal and symplectic involuti...
متن کاملComplete systems of invariants for rank 1 curves in Lagrange Grassmannians
Curves in Lagrange Grassmannians naturally appear when one studies intrinsically ”the Jacobi equations for extremals”, associated with control systems and geometric structures. In this way one reduces the problem of construction of the curvature-type invariants for these objects to the much more concrete problem of finding of invariants of curves in Lagrange Grassmannians w.r.t. the action of t...
متن کاملIncompressibility of Products by Grassmannians of Isotropic Subspaces
We prove that the product of an arbitrary projective homogeneous variety Y by an orthogonal, symplectic, or unitary Grassmannian X is 2-incompressible if and only if the varieties XF (Y ) and YF (X) are so. Some new properties of incompressible Grassmannians are established on the way.
متن کاملPolygon Spaces and Grassmannians
We study the moduli spaces of polygons in R and R, identifying them with subquotients of 2-Grassmannians using a symplectic version of the Gelfand-MacPherson correspondence. We show that the bending flows defined by Kapovich-Millson arise as a reduction of the Gelfand-Cetlin system on the Grassmannian, and with these determine the pentagon and hexagon spaces up to equivariant symplectomorphism....
متن کاملEnumerative coding for line polar Grassmannians with applications to codes
A k-polar Grassmannian is the geometry having as pointset the set of all k-dimensional subspaces of a vector space V which are totally isotropic for a given non-degenerate bilinear form μ defined on V. Hence it can be regarded as a subgeometry of the ordinary k-Grassmannian. In this paper we deal with orthogonal line Grassmannians and with symplectic line Grassmannians, i.e. we assume k = 2 and...
متن کامل